Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anthropogenic salinization resulting from road salt application can degrade aquatic environments by altering the structure and function of phytoplankton communities, ultimately reducing flows of resources through aquatic food webs. However, physiological mechanisms underlying taxon‐specific responses to salinization are often poorly linked to higher‐order ecosystem dynamics, limiting our ability to predict community responses to salinization. To this end, we tested hypotheses derived from Subsidy‐Stress and Ecological Stoichiometry theory by growing two cosmopolitan genera,Dolichospermum(prokaryotic, cyanobacteria) andScenedesmus(eukaryotic, green algae), across NaCl gradients and contrasting differences in their growth rates, degree of Na homeostasis, and cellular C : N : P ratios. We found mixed support for the subsidy‐stress hypothesis, with only stress responses observed for both species. Instead, growth declines appeared to be linked to stoichiometric tradeoffs between growth and homeostatic regulation, with stronger homeostatic Na regulation coinciding with a greater reduction inScenedesmusgrowth rates and higher variation in their stoichiometric C : N : P ratios across NaCl gradients. Nonhomeostatic Na regulation allowedDolichospermumto sustain higher growth rates, which appeared to constrain variation in their stoichiometric C : N : P ratios along with their stronger physiological regulation of intracellular P storage molecule production. Differences in phytoplankton growth responses were consistent with stoichiometric theory and field observations documenting shifts from green algae to cyanobacteria in response to freshwater salinization. Our results suggest that these shifts could take place below existing North American chronic threshold limits, resulting in decreased production at higher trophic levels by reducing phytoplankton biomass production rates and inducing nutritional stress in consumers.more » « less
-
Abstract Environmental factors such as nutrient and light availability may play important roles in determining the magnitude and direction of microbial priming and detrital decomposition and, therefore, the relative importance of microbial priming in carbon (C) dynamics in freshwater ecosystems.We integrated light availability with an existing conceptual model predicting the magnitude of the priming effect (PE) along a dissolved nutrient gradient (i.e.nutrientPE model). Our modifiedlight‐nutrientPE model hypothesises how light may mediate priming at any given nutrient concentration and provides a calculation method for quantitative PE values (i.e. light effect size at a given nutrient concentration).We used recirculating stream mesocosms withQuercus stellata(post oak) leaf litter as an organic matter (OM) substrate in a 150‐day experiment to test our model predictions. We manipulated light levels [ambient (full light), shaded (c.19% of ambient)] and phosphorus (P) concentration (10, 100, 500 µg PO4‐P/L) in a fully factorial design. We also supplied all mesocosms with 500 µg/L dissolved inorganic nitrogen. Microbial biomass, water column dissolved organic C, and leaf litter dry mass and recalcitrant OM [i.e. the fibre (cellulose + lignin) component of post oak substrate] were measured. Recalcitrant OM (ROM)k‐rates (day−1) were used to calculate the light effect size within P treatments as a log response ratio (ln[ambientk‐rate/shadek‐rate]) to ascertain PE magnitude and direction (positive or negative).Light was an important driver of dissolved organic C, a potential source of additional labile organic matter essential for priming heterotrophic microbes. There were weak PEs in total leaf litter dry mass remaining, but PEs were more pronounced in leaf litter ROM remaining. The strongest positive PEs (specific to litter ROM pools) occur in the highest P treatment, presumably due to a change in which nutrient, nitrogen versus P, was a limiting factor for microbes based on nutrient ratios rather than P concentration alone. These results illustrate the importance of considering light levels, nutrient ratios (rather than individual nutrients), and detrital ROM components in further PE model development.more » « less
An official website of the United States government
